
Dynamically balanced

synchronization-avoiding

LU factorization

with

multicore and GPUs

Simplice DONFACK
*

Stanimire TOMOV
†

Jack DONGARRA
‡

presenter: Piotr LUSZCZEK
§

∗
formerly: University of Tennessee, currently: CSCS Lugano, Switzerland

†
University of Tennessee

‡
University of Tennessee, Oak Ridge National Laboratory, and University of Manchester

§
University of Tennessee

1

HPC Hardware Zoo

∙ Intel

– x86 tick-tock: å Nehalem å Westmere å Sandy Bridge å Ivy Bridge å

Haswellå Broadwell

– MIC/Phi core-counts: Knights Corner: 57, 62, . . .

∙ AMD

– x86 architectures: å Bulldozerå Piledriver

– x86models: å Barcelonaå Shanghaiå IstanbulåMagny-CoursåWar-

sawå Seattle

∙ NVIDIA:å Teslaå Fermiå Kepler

∙ Per-core flop/s: 10, 20, 40

∙ Per-socket flop/s: 100 – 600

∙ Per-accelerator flop/s: 500 – 1500

Balance between CPU and accelerator: 2x – 10x

AsHES 2014 May 19, 2014 2/19

Motivation for Communication Avoiding Algorithm

∙ Running time is a function of :

– Time for arithmetic operations = Total(flops) × time/flop.
– Time for moving data =

Total(messages) × latency + Total(bytes) / bandwidth.

∙ Exponentially growing gaps between communication and computation.

– Annual improvements predictions [FOSC’04].

time/flop Bandwidth Latency

59%
Network 26% 15%

DRAM 23% 5%

AsHES 2014 May 19, 2014 3/19

Communication avoiding algorithms:

∙ aim at reducing communication by doing some redundant computations.

– Work more, talk less.

∙ are becoming a part of the numerical algorithm design.

Communication avoiding LU (CALU):

∙ removes the bottleneck in classic LU by performing the panel as a reduction
operation.

– Tournament pivoting replaces partial pivoting.

∙ factorizes the panel twice.

AsHES 2014 May 19, 2014 4/19

CALU [Grigori, Demmel, Xiang ’08]

The main difference with classic approach lies on the panel factorization.

The panel factorization is performed in two steps.

∙ A preprocessing step aims at identifying at low communication cost good pivot
rows.

∙ The pivot rows are permuted in the first positions of the panel and LU without
pivoting of the panel is performed.

∙ The update of the trailing matrix is performed as in classic LU (Gaussian
Elimination with Partial Pivoting – GEPP).

∙ The main difference lies on the panel factorization. In classic approach as
ScaLAPACK, panel is factorized column by column, while with CALU it is factor-

ized block by block using a reduction tree.

∙ The algorithm was first introduce for QR. The obvious generalization of CAQR
to CALU was not stable in practice. CALU uses a new pivoting strategy.

∙ CALU is stable in practice (and so is classic LU).

AsHES 2014 May 19, 2014 5/19

CALU’s Tournament Pivoting

AsHES 2014 May 19, 2014 6/19

Communication Avoiding Algorithm Lowers Bounds

∙ General lower bounds for all direct linear algebra.

– Total(bytes moved) =Ω(Total(flops)√
M

) = Ω(n
2

√
P
)

– Total(messages) =Ω(Total(flops)
M

√
M

) [Ballard, Demmel, Holtz, Schwartz ’11]

∙ Performance model of CALU, PDGETRF with optimal layout for general matrix.
M = O(n

2

P
)

PDGETRF CALU Optimal Lower

bounds

Total(messages) n logP 3
√
P log3 P Ω(

√
P)

+3

2

√
P logP

Total(words)
n2√
P
logP n2√

P
logP Ω(n

2

√
P
)

Total(flops)
2

3

n3

P
2

3

n3

P
2

3

n3

P

+O(n3

P log2 P
)

AsHES 2014 May 19, 2014 7/19

MAGMA’s Approach to LU Factorization

∙ MAGMA =Matrix Algebra on GPU and Multicore Architectures

∙ Hybrid LU factorization in MAGMA

– Panel are factorized on the CPUs.

– Update of the trailing submatrices are performed on the GPUs.

Example of execution ofmagma dgetrf() on a square matrix in 4 steps.

matrix/data view: DAG view:

∙ Efficient updates and optimal use
of the GPUs.

∙ Load imbalance between CPUs and GPUs.

∙ Poor multicore scalability.

AsHES 2014 May 19, 2014 8/19

CALU for MAGMA

First goal

∙ Adapt and evaluate CALU as panel factorization in MAGMA.

Approach

∙ Replace standard panel factorization in MAGMA with CALU.
∙ Increase then panel block size B to improve the load balance.
∙ Introduce two (algorithmic) block sizes:

– panel block size B, and

– internal block size ib for CALU.

AsHES 2014 May 19, 2014 9/19

MAGMA approach with CALU as panel: Initial results

First performance results on AMD Opteron 6172

∙ 4 sockets

∙ 12 cores @2.1Ghz

∙ Peak performance CPU: 403.2Gflops/s

∙ NVIDIA Fermi GPU: 504 Gflops/s

∙ Total: 907.2G flops/s.

Fast panel factorization technique is not enough.

AsHES 2014 May 19, 2014 10/19

Balanced Approach to Accelerated CALU

∙ The matrix is partitioned into two parts for the CPUs and the GPU.

∙ Each factorized panel is asynchronously sent to the GPU.

∙ A block column is dynamically sent to the CPUs during the runtime to balance
work.

a. Example of execution. b. Corresponding DAG.

AsHES 2014 May 19, 2014 11/19

Performance of Asynchronous CALU with Fixed Parameters

Variants of CALU on AMD Opteron 6172 using 12 cores and 1 GPU:

Results on: G AMD Opteron 6172 G 4 sockets G 12 cores @2.1Ghz G Peak

performance CPU: 403.2Gflops/sG NVIDIA Fermi GPU: 504 Gflops/sG Total: 907.2

Gflops/s.

How to determine the initial amount of work for the CPUs part?

AsHES 2014 May 19, 2014 12/19

Performance Model Parameters

Global parameters:

∙ d— the number of block column in the CPU’s part.

∙ P— the number of processors for the CPU’s part.

∙ g1 and g2— the peak performance of one CPU and one GPU respectively.

At each step of the factorization K, temporal parameters:

∙ NK— the number of block column of the remaining matrix.

∙WCPUs andWGPU— the amount of work required to compute the CPU’s part

and GPU’s part, respectively.

∙ TCPUs and TGPU— the time required to completeWCPUs andWGPU, respectively.

AsHES 2014 May 19, 2014 13/19

Performance Model’s Details

Initial matrix decomposition:

WCPUs =W1panel + (d− 1)W1update and TCPUs =
WCPUs
P×g1

WGPU = (NK − d)W1update and TGPU = WGPUs
g2

By solving TCPUs = TGPU, we obtain:

d

NK
=

Pg1

Pg1 + g2

d
NK
represents the percentage of the matrix to assign to the CPUs.

AsHES 2014 May 19, 2014 14/19

Performance Model’s Prediction

∙ AMD Opteron 6172: 4x12 cores @2.1Ghz; Peak performance CPU: 403.2 Gflops/s, GPU: 504 Gflops/s, Total: 907.2 Gflops/s.

∙ AMD Opteron 6180: 4x12 cores @2.5Ghz; Peak performance CPU: 480.0 Gflops/s, GPU: 504 Gflops/s, Total: 984.0 Gflops/s.

∙ Intel Xeon E5-2670: 2x8 cores @2.6Ghz; Peak performance CPU: 332.8 Gflops/s, GPU: 665 Gflops/s, Total: 997.8 Gflops/s.

AsHES 2014 May 19, 2014 15/19

Scalability Experiments

∙ AMDOpteron 6172: 4x12 cores @2.1Ghz; Peak performance CPU: 403.2 Gflops/s,
GPU: 504 Gflops/s, Total: 907.2 Gflops/s.

AsHES 2014 May 19, 2014 16/19

Performance of Asynchronous CALU with Estimated Parameters

Performance of CALU for square matrices.

∙ AMDOpteron 6180: 4x12 cores@2.5Ghz; Peak performance CPU: 480.0Gflops/s,
GPU: 504 Gflops/s, Total: 984.0 Gflops/s.

∙ Intel Xeon E5-2670: 2x8 cores @2.6Ghz; Peak performance CPU: 332.8 Gflops/s,
GPU: 665 Gflops/s, Total: 997.8 Gflops/s.

AsHES 2014 May 19, 2014 17/19

Scalability of Asynchronous CALU for Tall-and-Skinny Matrices

Performance and scalability using 48 cores.

Results on: G AMD Opteron 6172 G 4 sockets G 12 cores @2.1Ghz G Peak

performance CPU: 403.2Gflops/sG NVIDIA Fermi GPU: 504 Gflops/sG Total: 907.2

Gflops/s.

AsHES 2014 May 19, 2014 18/19

Summary, Conclusions, and Future Work

Contributions:

∙ Accelerated CALU LU factorization for a wide range of CPU-GPU hardware
combinations.

∙ Efficient and scalable implementation for tens of CPU cores.

∙ Simple model that makes the algorithm self-adapting in practice.

Possible extensions:

∙ Integrate dynamic load-balancing using runtime schedulers such as QUARK.

∙ Extend the approach to other algorithms

– Recursive parallel panel LU, RRLU, QR, CAQR.

– Two-sided factorizations: symmetric eigenvalues, SVD reduction.

* Please attend my Friday’s talk.
– Support for multiple GPUs.

– Support for hetergeneous accelerator configurations.

* Please attend my Tuesday’s talk.

AsHES 2014 May 19, 2014 19/19

